ChemTreat membrane autopsy capabilities include, but are not limited to:

Exterior Inspection
Exterior inspection of membrane elements examines for:
- Physical damage or defects in O-rings and brine seals
- Anti-telescoping device (ATD) for channeling and colloidal debris
- Feed spacer location as an indication of fouling

Internal Inspection
This is a destructive technique to examine the inside of the membrane. The key is to identify the foulant, then take the proper steps to treat the cause. Envelopes and feed spacers are inspected for the extent and pattern of fouling, channeling, and ungluing.

Deposit Analysis
During the internal inspection, foulant(s) sample are collected for analyses. Loss-on-ignition (LOI) determines the amount of organic versus inorganic material in the sample. X-ray fluorescence (XRF) is used to identify the inorganic material remaining following the LOI. Fourier Transform Infrared Spectroscopy (FTIR) can be used to further analyze organic material. Once a sample is scanned, it is matched to a vast library to determine its composition.

Microbiological Analysis
This analysis determines the sample's biological activity, including the total bacteria count (TBC), slime-forming bacteria, sulfate-reducing bacteria, and iron-related bacteria, etc. The diversity of a biofilm can be a good indication of its maturity.

Cell Test and Cleaning Study
Cell testing determines the performance of removed membrane samples based on the RO manufacturer's standard test condition. It is also useful in optimizing membrane cleaning procedures to improve overall element performance.

Fujiwara Test
This test determines whether the membrane surface has been exposed to an oxidizing halogen, such as chlorine or bromine.

Dye Test
A dye test is performed to detect any physical defects or membrane surface deterioration. Areas of damage allow the dye to soak through to the permeate side of the membrane.